Publications
-
In this study, we evaluated the effects of induced pluripotent stem cell-derived neural stem cell (iNSC) treatment on cellular, tissue, and functional recovery in a translational controlled cortical impact TBI piglet model. At 12-weeks post-transplantation, iNSCs showed long-term engraftment and differentiation into neurons, astrocytes, and oligodendrocytes. iNSC treatment enhanced endogenous neuroprotective and regenerative activities indicated…
Posted in: Publications -
Pediatric traumatic brain injury (TBI) often induces significant disability in patients, including long-term motor deficits. Early detection of injury severity is key in determining a prognosis and creating appropriate intervention and rehabilitation plans. Diffusion tensor imaging (DTI) tractography enables three-dimensional reconstruction of specific white matter tracts throughout the brain in order to detect white matter…
Posted in: Publications -
In this study, we sought to further understand how nutritional supplements influence specific brain function and architecture as well as cognitive and behavioral performance. Specifically, we aimed to identify modifications in functional connectivity (FC) patterns and targeted brain anatomies in piglets following perinatal intake of different nutritional diets using a graph theory based approach where…
Posted in: Publications -
Induced pluripotent stem cell-derived neural stem cells (iNSCs) are a multimodal stroke therapeutic that possess neuroprotective, regenerative, and cell replacement capabilities post-ischemia. However, long-term engraftment and efficacy of iNSCs is limited by the cytotoxic microenvironment post-stroke. Tanshinone IIA (Tan IIA) is a therapeutic that demonstrates anti-inflammatory and antioxidative effects in rodent ischemic stroke models and…
Posted in: Publications -
Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Due to bidirectional communication between the brain and gut microbial population, introduction of key gut bacteria may mitigate critical TBI-induced secondary injury cascades, thus lessening neural damage and improving functional outcomes. The objective of this study was to determine the…
Posted in: Publications -
Impaired gut homeostasis is associated with stroke often presenting with leaky gut syndrome and increased gut, brain, and systemic inflammation that further exacerbates brain damage. We previously reported that intracisternal administration of Tanshinone IIA-loaded nanoparticles (Tan IIA-NPs) and transplantation of induced pluripotent stem cell-derived neural stem cells (iNSCs) led to enhanced neuroprotective and regenerative activity…
Posted in: Publications -
Human mitochondrial DNA mutations are associated with common to rare mitochondrial disorders, which are multisystemic with complex clinical pathologies. The pathologies of these diseases are poorly understood and have no FDA-approved treatments leading to symptom management. Leigh syndrome (LS) is a pediatric mitochondrial disorder that affects the central nervous system during early development and causes…
Posted in: Publications -
Functional magnetic resonance imaging (fMRI) has significant potential to evaluate changes in brain network activity after traumatic brain injury (TBI) and enable early prognosis of potential functional (e.g., motor, cognitive, behavior) deficits. In this study, resting-state and task-based fMRI (rs- and tb-fMRI) were utilized to examine network changes in a pediatric porcine TBI model that…
Posted in: Publications -
Acute magnetic resonance imaging helps predict functional recovery at chronic timepoints post-stroke
Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to…
Posted in: Publications -
Harnessing the maximum diagnostic potential of magnetic resonance imaging (MRI) by including stroke lesion location in relation to specific structures that are associated with particular functions will likely increase the potential to predict functional deficit type, severity, and recovery in stroke patients. This exploratory study identified damaged brain structures including the insular cortex, somatosensory cortices,…
Posted in: Publications