Skip to Content

The American Chestnut Foundation – Georgia Chapter Meeting

Meeting Description
The GA-TACF annual meeting is an exciting opporunity to learn more about American chestnut restoration research in Georgia and national restoration efforts! Attendees will hear research presentations from Georgia scientists as well as from nationally recognized plant geneticist William Powell, who leads ground-breaking transgenic work with blight-resistant chestnuts at SUNY College of Environmental Science and Forestry. Also, attendees will tour laboratory and horticultural facilities involved in chestnut research at the University of Georgia. It is free to attend the meeting, and box lunches will be available to attendeeds for $7.
Please let us know if you can attend by RSVP-ing on our Eventbrite page by March 26th! Also, if you plan to purchase a box lunch, please select your sandwich preference when you register!
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Meeting Schedule
Warnell School of Forestry
9:00 – 9:30 Arrive, sign in, coffee, pay for lunch
9:30 – 10:00 Convene & membership meeting, Mark Stoakes
10:00 – 10:10 Welcome address, Dean Green
10:10 – 10:30 Update on breeding program, Martin Cipollini
10:30 – 10:35 American chestnut remaining in the wild, Nathan Klaus
10:35 – 11:15 Keynote address & presentation, Bill Powell
11:15 – 12:30 Embryogenesis & clonal propagation presentation and lab tour, Scott Merkle
12:30 – 1:30 Lunch; depart for Watkinsville Horticultural Research Farm
Watkinsville Hort Research Farm
2:00 – ~3:30 Tour Hort Farm backcross orchard, Ryan McNeil
Meeting Location Map
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Have a question? Email us at
Saturday, April 9, 2016 from 9:00 AM to 3:30 PM (EDT) – Add to Calendar
Warnell School of Forestry and Natural Resources, University of Georgia – 180 E. Green St.. Building 1, Room 304. Athens, GA 30602 – View Map

Pruning Workshop – Feb 24 – UGA Griffin Campus, Griffin, GA

Back by Popular Demand! 

Our pruning program will cover the A-Z of proper pruning techniques for all of your ornamentals and will briefly cover pruning fruit trees. Equipment selection and care will be addressed in detail. We will also cover the when, where, and how’s to prune certain plants and different techniques for creating a professional looking landscape. We will also spend some time addressing pest prevention through proper pruning procedures. The class will consist of both indoor lectures and outside hands-on demonstrations. Please dress warmly for the outside portion. Refreshments and lunch are included in program. Bob Westerfield and Bodie Pennisi, UGA Horticulturists, will be the program speakers.  Pre-registration required.


Wednesday, February 24, 2016


9:00 a.m. – 3:00 p.m.


UGA Griffin Campus, Student Learning Center, Room 105, 1109 Experiment Street Griffin, GA 30223


$59.00 – Refreshments, lunch and handouts included

Registration: Pre-registration required. To register with a credit card, please visit us online.

To register with cash or check, please contact Beth Horne at 770-228-7214 or by email at

2016 Center for Applied Nursery Research Grants Announced


Congratulations to the following researchers on their successful grant proposals in 2016. Research projects focus on agricultural engineering, environment and plant microclimate monitoring, entomology, plant pathology, soil science, horticulture, plant breeding and evaluation, new product evaluation, propagation, and water managemen. There are 5 funded projects for the year 2012 directed by researchers from the University of Georgia, and University of Florida.

The results of the research conducted at CANR benefit the entire industry. All results are published on the CANR website and presented at the Georgia Green Industry Trade Show in January.

The Center for Applied Nursery Research is open to all and presents a wonderful opportunity to observe new plant material and visually experience the projects in progress in addition to reading the final reports following project completion.

CANR is funded by special events and donations from industry and individuals. With continued support from the industry, the Center can continue to fund and provide a site for horticulture research in Georgia and the Southeast. For more information on how you can support CANR click_here

The 2016 Projects are:

Evaluating five improved genotypes of cotoneasters for container production in southeastern U.S.

Ryan Contreras

Over the past 15-20 years, production of cotoneasters has declined due to a variety of reasons, not the least of which has been a lack of breeding for improved varieties.  As Dirr points out, there are a number of problems with the genus including fire blight caused by Erwinia amylovora.  I have developed a number of selection that have proven resistant to fire blight in our greenhouse inoculation studies.  I have propagated these selections and grown them in limited numbers.  Industry input in Oregon on these selections has been extremely positive.  They root at high percentage (all >90%) and progress through production very fast; one selection in particular rooted and was transplanted into a #1 container in 1 month.  I believe these selections have potential to revive a “workhorse” genus and provide a crop for growers nationwide including areas where fire blight has limited their potential.  The objective of the proposed research is to grow these five selections alongside two industry cultivars and evaluate their production scheduling and resistance to disease (fire blight), insect (lace bug), and environmental stress (heat).

Longevity and efficacy of pre-emergent herbicides

Dr. Mark Czarnota

University of Georgia

There are many herbicide available to the nursery industry, but little scientific research has been performed to determine the longevity of the herbicide in soil-less media.  It is often thought that most preemergence herbicide provide approximately 30 to 40 days of control where weed seed growth is inhibited, and the additional month or two of weed control is just time that no weed infestation is present.  To determine the length of time that a herbicide provides weed free growth, replanting of weeds seed needs to occur weekly until no weed control is observed.  The objective of this study is to test the longevity of select herbicides on the control of select weeds, and determine the actual length of weed control that an individual herbicide can be expected to provide.


Automating leaching fraction measurements to improve water conservation, fertilizer efficiency, and plant growth during container nursery production

Amy Fulcher

Water is an essential input for container nursery crop production.  The threat of regulation, poor water quality, periodic drought, and competition for water make managing water resources a critical aspect of container nursery management.


Measuring leachate and calculating leaching fraction (leachate volume/total irrigation volume) is an effective way to determine irrigation volume and can be used to improve irrigation scheduling. Determining the leaching fraction of one plant during one irrigation cycle is typically done by manually capturing and measuring the irrigation water volume and the leachate coming out of the bottom of the container. Other methods include weighing the leachate and irrigation water, and aggregating leachate on a collection pad from multiple plants before measuring. However, manual methods of leachate measurement are time and labor intensive and therefore difficult to perform at a nursery on a scale suitable to capture day-to-day and plant-to-plant variation. Furthermore, these methods are only functional at a small scale; they would be difficult to adapt to a large-scale outdoor nursery environment under overhead irrigation.


Our objective is to design and develop automated leachate gauges that will function in an outdoor nursery setting with overhead irrigation and deliver accurate, real time data that can be used to schedule irrigation.  The proposed system will automatically adjust irrigation run time to maintain a leaching fraction of 10-20%.


Chemical fate of phosphorus in containerized nursery crop production

James Owen, Jake Shreckhise, and Alex Niemiera

Virgina Tech,

A complete fractionation of phosphorus (P) (i.e. total phosphorus, orthophosphate, dissolved phosphorus and insoluble phosphorus) in pore-water (i.e., solution residing in container substrate pores) of amended and non-amended soilless substrate has not yet been performed; furthermore, the determined fraction of total leachate phosphorus in the form of orthophosphate (plant available P) has been inconsistent between studies (Million et al. 2007; Ristvey et al., 2004). Fractioning pore-water phosphorus will provide insight on short-term quantity of plant available phosphorus in pore-water, as well as the immediate bioavailability of P leached from soilless substrate. We hypothesize that not all pore-water phosphorus is immediately plant available. Thus, our results would allow us to make fertilization recommendations based on plant available phosphorus rather than total phosphorus in pore-water. Additionally, determining the proportion of dissolved and insoluble phosphorus in leachate would aid in our understanding of the container nursery’s environmental impact due to phosphorus runoff. Therefore, our objectives are to determine (1) the concentration and form of phosphorus in pore-water of lime- and micronutrient-amended and non-amended pine bark when fertilized with controlled-release fertilizer containing nitrogen, phosphorus and potassium AND (2) the effect of pine bark source (i.e., supplier) on pore-water phosphorus form and concentration when fertilized with controlled-release fertilizer containing nitrogen, phosphorus and potassium. Preliminary experimentation at Virgina Tech in our laboratory has shown a dramatic effect of amendments on leached P fractions warranting a need for continued research described within this proposal.

Container Production Techniques of Syzygium buxifolium, An Alternative to Buxus

Donglin Zhang

University of Georgia,

Recently, boxwood blight, a devastating fungus disease (Cylindrocladium buxixola), has been reported in Georgia and 15 additional states and its alternatives are desperately needed. Syzygium buxifolium from central China shares similar ornamental features as boxwood, but is resistant to boxwood blight because it belongs to Myrtaceae. The objectives are 1) to evaluate Syzygium performance in container, 2) to investigate container production strategy for Syzygium, and 3) to address the production schedule of Syzygium as a potential new plant.

Precision Irrigation – Publications and Information Resources


“Specialty Crop Research Initiative – Managing Irrigation and Nutrition via Distributed Sensing”

Our project is all about saving water, increasing efficiency and reducing the environmental impacts of ornamental plant production practices! We are using wireless sensor networks and environmental modeling to more accurately predict and apply irrigation water in nursery and greenhouse operations, and monitor green roofs for stormwater mitigation.

Our goal is to provide growers with the ability to precisely monitor and control applications of water and nutrients to plants in these production settings, based upon daily plant requirements.

Our vision is to provide the nursery and greenhouse industries with cost-effective equipment and strategies that can be used to reduce the volume and cost of inputs, increase profitability, reduce the environmental impacts of nursery and greenhouse production and encourage sustainable practices in the United States and beyond.

The purpose of this website is to provide you with an overview of our project and information about the research and development of an advanced environmental monitoring and irrigation system. We are actively collaborating with a number of commercial growers using their production areas as test environments. These collaborations will help us learn to best implement this new technology to minimize cost and maximize efficiency.

The SCRI-MINDS project has demonstrated multiple benefits of wireless sensor control systems for commercial nursery and greenhouse operations — This starts with reducing water applications compared to our best irrigation managers by between 40 and 70% depending on crop and season. However, these reductions in irrigation water use also extend to significant reductions in nutrient leaching and crop loss due to disease, with associated environmental benefits.

As importantly, we have demonstrated that there are multiple benefits which are associated with increased timeliness of irrigation decisions, which all translate into increased crop yield and quality and ultimately increased profitability for growers. The success of this project will culminate in the commercial release of the PlantPointTM advanced sensor network control system by Decagon Devices, Inc. in early 2015.

All of these benefits are highlighted in our Final Year 5 report, which you can access from our Impacts Page

Or check out our publications from the drop-down menu here.

You can also download a summary of our project impacts from: SCRI-MINDS Impact Summary

Highlights: July 27, 2015 Edition

The aim of HighLights newsletter is to keep nursery and landscape professionals, Extension and research personnel, Master Gardeners, horticultural suppliers, and home gardeners up-to-date on news from the Trial Gardens and horticultural research at the South Mississippi Branch Experiment Station in Poplarville.

HighLights 2015-07-27

2015 International Trials Conference – Portland, OR – August 24-27, 2015

Wilsonville, Oregon (July 9, 2015) – The International Trials Conference, held this year in Portland, Oregon, has announced its schedule of stops for this year’s conference tour of area sites playing vital roles in plant research, testing, and production. The day long excursion takes place on the next to last day of the prestigious biennial conference held August 24- 27, 2015.

If you have not attended this meeting – you should. It is a wonderful location and hosted by fantastic plant-people.

Read more here: ITC PRelease7-9-15ITCTours

Systems-based Pest Management: Propagation Practices

This video demonstrates how nursery crop producers can apply a systems-based pest management approach to propagation, eliminating or minimizing the spread of pathogens from propagation houses and beds into the main production areas. Five practical tactics are featured, providing an overview of ways producers can stop or minimize the spread and, consequently, reduce costs associated with damage and control measures. Funding for this video was provided by the Southern Risk Management Education Center, the University of Tennessee Institute of Agriculture, and the UT Department of Plant Sciences. Narrated by Ms. Haylee Jones, produced by Ms. Halee Jones and Dr. Diana Cochran with assistance from Dr. Amy Fulcher.

To access Alan Windham’s carrot assay described in this video, use this link  and select Systems-based Pest Management.

Link to video here.