2006 Southeastern Hay Contest Results

A Cooperative Extension Effort of Auburn University, Clemson University, The University of Florida, and The University of Georgia

Overall results for bermudagrass, perennial peanut, perennial cool season grass, and miscellaneous hay categories in the 2006 Tri-State Hay Show at Moultrie are listed in Table 1. Almost 200 hay samples were received from Alabama, Florida, Georgia, and South Carolina. This is almost 500% more samples than the 2004 contest and 50% more samples than entered in 2005. Submitted samples also had a much higher nutrient content that samples submitted in 2004 and 2005.

What is Relative Forage Quality?

Past hay quality prediction equations were based on the fiber *concentration* of the hay crop. However, hays can have similar fiber content yet have very different digestibility. For instance, Tifton 85 bermudagrass often has a higher fiber concentration than other bermudagrass varieties, yet is more digestible. This improved digestibility results in enhanced animal performance, but is not reflected using traditional hay testing methods. The Relative Forage Quality index was developed by the University of Wisconsin to predict the fiber *digestibility* and animal intake of harvested crops. Unfortunately, these equations were not applicable to warm season forages like bermudagrass, bahiagrass or perennial peanut. Since 2003, hundreds of warm season samples have been used to develop an RFQ equation for bermudagrass and other warm season forages. Currently, all forage sample results from the UGA Feed and Forage Testing Lab in Athens contain an estimate of Relative Forage Quality. This value is a single, easy to interpret number that improves producer understanding of a forage's quality and helps in establishing a fair market value for the product.

How can Relative Forage Quality help me?

Relative Forage Quality allows hay producers to easily categorize and price hay lots based on relative quality. Cattle producers can purchase hay lots depending on its end use. For example, there is little need to feed high-end quality hay to livestock that could easily utilize a poorer quality forage. Hay with a RFQ of 115-130 can be fed to maintain beef cow-calf pairs, hay with an RFQ of 125-150 is adequate for stocker cattle or young growing replacement heifers, and hay with an RFQ of 140-160 is suitable for dairy cattle in the first three months of lactation. It is also easy to see that Relative Forage Quality could provide the framework for a quality hay marketing system. For example, hay with RFQ of 155 could conceptually be labeled "premium" hay, while hay with an RFQ of 105 could be labeled "fair". This simple system could allow producers to price hay consistently and fairly across harvest maturity, fertilization regimes, or plant species (i.e. bermudagrass, bahiagrass, perennial peanut, or tall fescue).

Think you can do better?

Submit your sample in Summer 2007 through your local county Extension office.

Table 1. Category winners from the 2006 Southeastern Hay Contest. 197 Total Samples Entered

Samples Entered	Farm	Crude Protein, %	TDN, %	RFQ
Warm Season Grass Hay	Overall Range	5.8-16.2	51-70	61-155
1 st place	John Case Dade Co, GA	12.4	68	155
2 nd place	Jerome Bunn Monroe Co, GA	15.6	70	141
3 rd place	Rusty Bean (GA), Ed Trice (GA)	14.5 12.7	67 67	139 139
Legume Hay	Overall Range	9.8-21.6	59-70	98-180
1 st place	Mark Harris Huntsville, AL	21.6	67	180
2 nd place	Richard Cone Madison Co, FL	17.0	70	155
3 rd place	Hudson Farms, Madison Co, FL	13.8	67	145
Cool Season Grass Hay	Overall Range	6.4-12.1	52-62	80-116
1 st place	Sid Hetzler Walker Co, GA	10.1	58	116
2 nd place	Split Tree Farm Walker Co, GA	11.4	62	108
3 rd place	Luke Gray Dade Co, GA	10.6	60	108
Mixed Hay	Overall Range	5.0-19.8	45-69	50-164
1 st place	Bill Jackson Washington Co, GA	13.1	68	164
2 nd place	Joe Armstrong Grady Co, GA	15.9	66	162
3 rd place	Ed Trice Upson Co, GA	16.6	69	155
Grass Baleage	Overall Range	7.9-17.7	51-65	53-128
1 st place	Troy Platt Madison Co, FL	12.0	58	128
2 nd place	Greenview Farms Inc. Wayne County, GA	13.2	64	119
3 rd place	Troy Platt Madison Co, FL	10.6	54	111
Legume Baleage	Overall Range	11.4-15.9	56-68	95-215
1 st place	Troy Platt Madison Co, FL	15.9	68	215
2 nd place	Sundown Farms Madison Co, FL	13.1	67	140
3 rd place	Troy Platt Madison Co, Fl	15.7	67	137